24 research outputs found

    Demonstrating Advantages of Neuromorphic Computation: A Pilot Study

    Get PDF
    Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency. We employ a single-chip prototype of the BrainScaleS 2 neuromorphic system to implement a proof-of-concept demonstration of reward-modulated spike-timing-dependent plasticity in a spiking network that learns to play the Pong video game by smooth pursuit. This system combines an electronic mixed-signal substrate for emulating neuron and synapse dynamics with an embedded digital processor for on-chip learning, which in this work also serves to simulate the virtual environment and learning agent. The analog emulation of neuronal membrane dynamics enables a 1000-fold acceleration with respect to biological real-time, with the entire chip operating on a power budget of 57mW. Compared to an equivalent simulation using state-of-the-art software, the on-chip emulation is at least one order of magnitude faster and three orders of magnitude more energy-efficient. We demonstrate how on-chip learning can mitigate the effects of fixed-pattern noise, which is unavoidable in analog substrates, while making use of temporal variability for action exploration. Learning compensates imperfections of the physical substrate, as manifested in neuronal parameter variability, by adapting synaptic weights to match respective excitability of individual neurons.Comment: Added measurements with noise in NEST simulation, add notice about journal publication. Frontiers in Neuromorphic Engineering (2019

    Emulating insect brains for neuromorphic navigation

    Full text link
    Bees display the remarkable ability to return home in a straight line after meandering excursions to their environment. Neurobiological imaging studies have revealed that this capability emerges from a path integration mechanism implemented within the insect's brain. In the present work, we emulate this neural network on the neuromorphic mixed-signal processor BrainScaleS-2 to guide bees, virtually embodied on a digital co-processor, back to their home location after randomly exploring their environment. To realize the underlying neural integrators, we introduce single-neuron spike-based short-term memory cells with axo-axonic synapses. All entities, including environment, sensory organs, brain, actuators, and the virtual body, run autonomously on a single BrainScaleS-2 microchip. The functioning network is fine-tuned for better precision and reliability through an evolution strategy. As BrainScaleS-2 emulates neural processes 1000 times faster than biology, 4800 consecutive bee journeys distributed over 320 generations occur within only half an hour on a single neuromorphic core

    Transition between canted antiferromagnetic and spin-polarized ferromagnetic quantum Hall states in graphene on a ferrimagnetic insulator

    Get PDF
    In the quantum Hall regime of graphene, antiferromagnetic and spin-polarized ferromagnetic states at the zeroth Landau level compete, leading to a canted antiferromagnetic state depending on the direction and magnitude of an applied magnetic field. Here, we investigate this transition at 2.7 K in graphene Hall bars that are proximity coupled to the ferrimagnetic insulator Y3Fe5O12. From nonlocal transport measurements, we demonstrate an induced magnetic exchange field in graphene, which lowers the magnetic field required to modulate the magnetic state in graphene. These results show that a magnetic proximity effect in graphene is an important ingredient for the development of two-dimensional materials in which it is desirable for ordered states of matter to be tunable with relatively small applied magnetic fields (> 6 T)

    Versatile emulation of spiking neural networks on an accelerated neuromorphic substrate

    Full text link
    We present first experimental results on the novel BrainScaleS-2 neuromorphic architecture based on an analog neuro-synaptic core and augmented by embedded microprocessors for complex plasticity and experiment control. The high acceleration factor of 1000 compared to biological dynamics enables the execution of computationally expensive tasks, by allowing the fast emulation of long-duration experiments or rapid iteration over many consecutive trials. The flexibility of our architecture is demonstrated in a suite of five distinct experiments, which emphasize different aspects of the BrainScaleS-2 system

    Combining teaching and research: a BIP on geophysical and archaeological prospection of North Frisian medieval settlement patterns

    Get PDF
    We performed a research-oriented EU Erasmus+ Blended Intensive Program (BIP) with participants from four countries focused on North Frisian terp settlements from Roman Iron Age and medieval times. We show that the complex terp structure and environment can be efficiently prospected using combined magnetic and EMI mapping, and seismic and geoelectric profiling and drilling. We found evidence of multiple terp phases and a harbor at the Roman Iron Age terp of Tofting. In contrast, the medieval terp of Stolthusen is more simply constructed, probably uni-phase. The BIP proved to be a suitable tool for high-level hands-on education adding value to the research conducted in on-going projects
    corecore